On the classification of APN functions up to dimension five

Abstract

We classify the almost perfect nonlinear (APN) functions in dimensions 4 and 5 up to affine and CCZ equivalence using backtrack programming and give a partial model for the complexity of such a search. In particular, we demonstrate that up to dimension 5 any APN function is CCZ equivalent to a power function, while it is well known that in dimensions 4 and 5 there exist APN functions which are not extended affine (EA) equivalent to any power function. We further calculate the total number of APN functions up to dimension 5 and present a new CCZ equivalence class of APN functions in dimension 6.

Cite
In Designs, Codes and Cryptography 49, 1-3 (2008), 273-288, Springer
Date
Links